NUMERICAL CALCULATION OF MOTION AND LASER
RADIATION HEATING OF PLASMA FORMED DURING ABSORPTION
BURST IN VAPORS OF A SOLID BODY

G. G. Vilenskaya and I, V. Nemchinov

We examine the plane (one-dimensional) problem and also the problem with cylindrical or spherical
symmetry of the motion and heating by laser radiation of the plasma formed during the absorption "burst"
in the vapors of a solid body. The physical basis and mathematical formulation of the problem are given,
A numerical method for solving the problem is proposed and results are illustrated by numerical calcu-
lation of a specific version in the plane case. Graphs are presented which illustrate the motion-develop-
ment pattern, Estimates are made of the basic parameters in the vapor layer at various stages: burst
criterion, estimate of pressure decrease at the moment of screening initiation, development of the warmup
process, and amplitude of the shock wave propagating from the heating zone. The parameters of the de-
tonation wave propagating from the heating zone are evaluated and a comparison is made with the self-
similar problem on the self-consistent rarefaction and heating wave. Computational results are presented
which show the influence of two-dimensionality on the screening development time.

Under the action of powerful laser radiation flux incident on the surface of a nontransparent solid
body, the thin surface layer of its matter is rapidly heated and vaporized. The vapors usually absorb the
optical band radiation quite weakly. Therefore, the radiation penetrates through the vaporizing and ex~
panding vapor layers into the deeper layers of the matter, causing their heating, vaporization, and so on —
a vaporization wave develops [1-6]. As the vaporization wave advances and the mass of the vaporized mat-
ter and the thickness of the vapor layer increase, the pressure gradient decreases. Therefore, cooling as
a result of expansion decreases, becoming comparable at some "critical™ moment of time with the heating
due to absorption of radiation by the weakly ionized vapors., Local temperature rise begins and the tem~
perature rise rate increases rapidly. This is associated with the nonlinear temperature dependence of the
absorption coefficient at low temperatures (on the order of the phase change temperature) and the low de-
grees of ionization, which increase in the presence of thermodynamic equilibrium in accordance with the
Boltzmann exponential law. Consequently, we have the process of rapid increase of the temperature, the de-
gree of ionization, and, therefore, the absorption coefficient. An absorption "burst" occurs, and because
of the luminosity increase it is a burst in the direct sense of the word. The ionized layer of matter absorbs
all the incident radiation and vaporization ceases, The narrow energy release zone becomes a region of
high pressure, a compression wave develops, and the shock wave propagates opposite the radiation flux.
The degree of ionization of the vapors behind the front of this shock wave and the corresponding optical
radiation absorption coefficient are quite large, and absorption of the radiation takes place only in the nar-
row zone near the shock wave front. The shock wave intensifies and changes into a detonation wave [7, 8].
After the detonation wave reaches the boundary with the vacuum, the layers of low-mass matter adjacent
to this boundary are heated up rapidly and spread out, their optical thickness decreases, the radiation be-
gins to penetrate into the deeper layers of the matter, i.e., a self-consistent rarefaction and heating wave
propagates [9-11], traveling toward the surface of the solid body. Ahead of it the shock wave propagates,
reflecting from the surface of the solid body. Pressure oscillations develop on this surface, After the
rarefaction and heating wave approaches the surface of the solid body, the vaporization renews. The hot
vapor layer is effectively forced back from the surface of the solid body by the colder vapors, which have
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a temperature close to the phase-change temperature. The critical conditions may be reached again in
this layer and then another burst occurs. The vaporization process thus has a pulsating nature, This pro-
cess can be considered continuous only for a screening initiation time which is much less than the charac-
teristic exposure time, :

Notation, u=velocity; p=density; v=specific volume (v= 1/p); p=pressure; e =internal energy; T =
temperature; Ty =equilibrium temperature of vapor and condensate; Q =heat of vaporization; x =vapor frac-
tion in mixture of vapor and condensate; h =enthalpy; H=effective "combustion™ enthalpy; q =radiation flux
density; F =qr?-!=total radiation flux; r =Eulerian coordinate; »=1, 2, 3 in the plane, cylindrical, and spheri-
cal cases respectively; m = Lagrangian mass coordinate; t =time; c=speed of sound; k =differential adia-
batic exponent; vy =effective (integral) adiabatic exponent; ®=mass absorption coefficient; R =universal gas
constant; Cp, and Cy = specific heats; and g =molecular weight of the matter.

A "plus" index relates to the reflected radiation flux, a "minus" index relates to the incident radia-
tion flux; s relates to the condensed phase; g relates to the gaseous phase; W relates to the parameters be-
hind the vaporization wave; 0 relates to the parameters ahead of the vaporization wave (in the unvaporized
matter); and an asterisk relates to the moment of burst.

1. PROBLEM FORMULATION

Basic Assumptions. In the region in question, in which we calculate the motion and the heating, the
medium is in the thermodynamic equilibrium state (this applies to ionization equilibrium.— and herein lies
the difference between the considered phenomena of weakly ionized vapor heating and nonequilibrium break-
downincoldgases {7, 81— and also to the equilibrium between the condensed and vaporous phases). In the
latter case we also assume the existence of mechanical and thermal equilibrium between the phases.

We neglect the heat transfer processes: conventional and electronic thermal conduction, thermo-
electronic emission from the surface of the condensed phase, diffusion of electrons, and also reradiation
by the heated plasma,

We assume that reflection takes place at the surface of the solid body or at some effective reflect-
ing surface in the equilibrium mixture of vapor and droplets, where the condensate concentration is suf-
ficiently high. In the remaining region there is no reflection or scattering. The reflection takes place
specularly with the effective reflectivity k,. determined from experiments prior to beginning of surface
screening by the vapors, or equal to its value under conventional conditions (its tabulated value) if such
experimental data are not available. We also examine the opposite limiting case — absence of condensa-
tion behind the vaporization wave,

The system of equations describing the motion and heating of the vapors has the following form:

equation of motion

" ap -
T (1.1)
equation of continuity
o o)
3t am (1.2)

energy equation

6(e+u2/2) + pur“"1)+_F=0
om

(1.3)
transport equations for incident and reflected radiation
6;;;' = e g F vl %Fr'n — B, F =F*1 F- (1.4)

equation of state and absorption coefficient dependence on the thermodynamic parameters:
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for T > Ty(p) (or e >ey(p))
p=ep(y—1), v =7 p, % =5/ (1.5)
for e <ey(p) (in the two-phase region)

T =T, (p), € =eg + €s A—2v= vg + Vs (—a),p =pg=c¢gg (¥ — 1) (1.6)
Kg = Ugleg), % = %gz + %, (1 — 2)

The functions ¥y {e, p), % {e, 0), €z {0), vz (eg) ¢, {eg), %g(¢z) are assumed given,

In the two-phase region there is a single-valued connection between the pressure and temperature;
therefore the vapor internal energy eg depends only on the temperature, in spite of the possible processes
of atom association into molecules and their dissociation, and also weak ionization,

The pressures are assumed quite low in comparison with the bulk modulus of the condensed phase
and the critical pressure in the gaseous phase; therefore vg =v,, where v, is the specific volume corre-
sponding to the normal density of the solid body.

The tables of v (e, p) and %{e, p) for the vapor outside the two-phase region, and also v (e) and n(e)
within this region,are calculated with account for the ionization processes, both single and multiple ion-
ization and sometimes even complete ionization, since very high temperatures can be reached when using
laser radiation to heat vapors,

In the calculations of the equation of state no account was taken for nonideal gas effects, which may
be significant in certain cases because of the high vapor densities,

In the first rough approximation at low temperatures we can set

eg = (Co)gT, ¢, = (Co)T =3RT [ p, v =5 (1.7)
and represent the relation Ty(p) in the form
lg(p) =a(T) —pQ/RTy =a()— b/ T, (1.8)

In the high-pressure region the relation Ty (p) is often unknown, then the calculation using (1.8) is
made using the last (reference) theoretical or experimental point T =T, in the region of comparatively low
pressures, and then either by direct extrapolation of a(T) or simply by setting a=a(T).

The absorption coefficient of the vapors is calculated with account for variation of the degree of ion-
ization, In the concrete calculations of the absorption coefficient we took into account free-free electron
transitions in the field of neutral atoms and ions, free~free absorption from the highly excited states, and
in certain cases molecular absorption (Swan bands for carbon), and also absorption as a result of electron
detachment from negative ions,

Vaporization Wave, If the zone in which the phase change takes place is sufficiently narrow in com-
parison with the characteristic dimensions of the problem and can be considered effectively a discontinuity
then the propagation of this zone can be described on the basis of the conservation laws across this dis~
continuity. Such a wave will be a deflagration type wave [12], since it travels quite slowly with respect to
the matter ahead of it and sonic disturbances overtake it, creating in the unvaporized matter a pressure,
which will be the unknown parameter.

The conservation laws and the condition of phase equilibrium of the vapor and condensed matter
alone, and also the Jouguet condition behind the wave or the condition of compatibility of the wave motion
with the flow behind it for subsonic vapor efflux, will not be sufficient for determining its velocity, even fo:
a known magnitude of the radiation flux density qy supplied to the vaporization wave. Some other physical
condition must be added, Here we shall use the condition of a given degree of vaporization completion, i.e,
a given value of xy, which has the following meaning, '

In contrast with the ideas of [1-4], in the present study, as in [5, 6], we assume that phase equilibriu
is established for sufficiently long duration of the process at some section which is not far from the vapor-
izing surface, regardless of whether the vaporization is surface or volumetric. If we assume that the mat-
ter behind the wave is completely vaporized and the vapors are transparent, then they begin to expand adia
batically, their temperature decreases, and condensate must appear in them. The condensate particles be-
gin to absorb the radiation markedly. Such absorption by the condensate plays a fundamental role in de-
termining the vaporization wave propagation velocity.
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Specifically, according to [13], for carbon particles the mass absorption coefficient ®g=0.,3 - 10°
cm¥g, while even for energy input E =2 J/cm? and heat of vaporization Q =40 kJ/g, the vaporized mass
my, exceeds 5:107° g/cm? Consequently ngmy > 1 and significant condensation is not possible, since the
energy release owing to radiation absorption by the condensate hinders further condensation.

Neglecting radiation absorption by the vapor itself (i.e., assuming that n="Ng (1—x), where x is the
vapor mass fraction), we find that the transparency condition for the vapor-condensate mixture leads to
the condition ®gmy, (1—x) 21, For ®gmy »>1 we obtain (1—x) <« 1, i.e., vaporization of the matter is prac-
tically complete.

Thus, we can assume that behind the vaporization wave the value of xy is given, and xy is either that
value of x for which the equilibrium can be considered already established, if this establishment took place
for x<< 1, or that value of x for which the width of the vaporization wave's leading edge is quite small in
comparison with the characteristic dimension of the problem (so that the calculation is not made in the zone
of large parameter gradients). WUsually (1—xw) <« 1; therefore the exact value of xy is not significant and
for many practical applications we can take xy =1, In those cases in which condensation does not take place
behind the vaporization wave, a more detailed analysis of the structure of the vaporization wave is re-
quired [3, 4].

Within the framework of the system being considered the calculation can be made either in the limit-
ing case of no condensation, i.e., for surface vaporization, as assumed in [1-4}], or for sufficiently short
exposure times, when condensate cannot form [4]. In this case Eqgs, (1.6) are not used and absorption by
the condensate is not taken into account. The additional condition behind the vaporization wave can betaken,
for example, in the form of the condition that the transition be isothermal because of strong thermal con-
ductivity [3] or from examination of the wave structure on the molecular-kinetic level [4].

Boundary Conditions. The following boundary condition was taken at the boundary between the vapors
and vacuum (for m =0);

'p=0, FF=F,(1)<0 (1.9

The following boundary conditions were taken on the vaporization wave (for m =mw), travelling with
the velocity Dy, =dmy,/dt:

a) if the boundary is stationary (Dy, =0) ,.
. ty =0 (1.10)
b) if the vaporization wave moves (Dy #0)
T =1y Fpt=—Fk F,-, ot F, =F, (1 —k)

the energy balance condition

P e l2+Q  H .
continuity
D, Db, (1, —1)
Uy = — T = “; o (1.12)
ww wtw w

Here the density py was expressed in terms of hy and py,using (1.5).

The velocity uy is extrapolated to the front (compatibility of the motion of the vaporization wave with
the flow behind it) if it is found that uy < cy or the additional Jouguet condition uw =cw is assumed., The
pressure p, at the surface of the solid body is calculated from the momentum equation

Po = Pu — Dytyri™™® (1.13)
Upon satisfaction of the Jouguet condition
Po = Py (kw + L) (1.14)

Initial Conditions. For t=t, some distribution of the funection u(t,, m), v(t,, m), plty, m), rit,, m) is
given for my°=m =0,
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2, NUMERICAL CALCULATION METHOD

System of Difference Equations. The difference scheme for (1.1)-(1.4) will be presented for sim-
plicity for the example of the planar case (v=1). This difference scheme has the form

ui™ = — & [(p")i — (p)ix] (2.1)
7 =0 — G (el — uif] (2.2)

EP = B — & ()il — (o] — (0g ) 0m)y” At 2.3)
Here n and n+1 are the numbers of the time steps, and i and i+1 are the numbers of the space steps.
The following notations are also introduced

E"n. — ein + (uin)z / 2’ E-’;ﬂ n+1 + (un+1)2/2
PW=p"+ f?%, &y = At/ (miy — miy)

Since discontinuous solutions, shock waves, may arise in this problem, we introduce into the system
of finite difference equations [14] the Neumann viscosity f for the smearing of these shock waves as fol~-
lows. Let all the parameters be known on the nth time layer. On the (n+1)-th time layer we calculate the
velocity uinH in the first approximation, using (2.1) for fiIH'1 2= 0. Then we calculate the Neumann vis-
cosity using the relation

T = Amg? (e Augy - e A1) 204" (2.4)

Here
gt =1, if  Aw=upi —up <0
et =0, if Auyy >0
S =1, i Aug=ufT—uf3 <0
" =0, if Ay >0

The constant €, is chosen so that the shock wave smears over several computational points. Then
the velocity is recalculated using (2.1) and the calculation is made using (2.2) and (2.3).

Analyzing the stability of the selected difference scheme without viscosity [14], we obtain for the in-
finite problem the limitation on the time step in the form of the Courant condition At =< Am/pc, where ¢
(speed of sound) is calculated by differentiating the eguation of state (1.5) or (1.6). Stability analysis of
the problem with account for viscosity yields the additional limitation on the time step

At < Amv | 2e(| Au]

Calculation of Vaporization Wave, Let

#exp< § % (T, p) dm) (2.5)

My

If ow > ey, where £y is a given constant, and q,(t) =0, then the motional wave and the parameters on
the vaporization wave are calculated as follows:
m —m

1 +1 N
my " = my," 4 D, At, Uy = U 4w, —u, U= Uy, - ‘Tu;l_—m~ (Uapi1 — twsa) (2.6)

(w+1 is the index of the computational point closest to the vaporization wave.)

The iterations continue, which we illustrate by a particular example: let v =k =const, Cp=const,and
Ty(p) is described by (1.7) for a=a,=const.
D]+1 r) P90 (%) pf,,ﬂ :_D_w’ TJ'-i—l
13 J+I( w2 /21 4-Q 7 upy
Here j is theiteration number. After the convergence condition is reached, when |(h”rl — k) /by < &
the following quantities are taken:

b/la—1lg(pkM)], it = CpTH (2.7)

pruL,Tl — Dgﬂ/unﬂ, n+1 hw' [y, ¢ n+1 'l/ ('T _ 1)kh$ﬂ/'r (2.8)

I ugﬂ >l then ull*!=cl*! and the iterations with respect to j are repeated, However, if
@w < Ew OT q,(t) =0, we assume that the vaporization wave has stopped and the new condition Uy =0 has oc~
curred. In this case the parameters of the vapor at the stationary boundary are taken as:
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ubt=0, D=0, o =u,+ Anl?/ (mit—mi?) (2.9)
n+l,, n

+1 n YUy Py dg \®

E;n” _Ew —At[mn+1___mn+1+ (am)

w

W+l w

where

(F%)o = 00O w1 + 1) g,

Calculation of the iterations on the vaporization wave at the moment of vaporization renewal presents
definite difficulties, since the velocity uy increases sharply in a quite short time interval, Therefore at
these moments the velocity uy, is initially taken from the nearest computational point. If uy found from
the conservation equations is still small in comparison with the speed of sound ¢y, we assume that the
vaporization wave has not yet renewed its motion. Stability analysis of the calcuation in the presence of
a boundary, the vaporization wave, shows that the chosen computational scheme is always stable and there
is no additional limitation on the time step At in comparison with the infinite problem.

Determining Velocity at the Vapor—Vacuum Boundary. To determine u§ +1 the function u(m) is ex-
trapolated to the vapor—vacuum boundary from the neighboring computational points completely analogously
to the extrapolation of the velocity on the vaporization wave, Stability analysis of this boundary condition
shows that the computational scheme chosen above is unconditionally stable.

Calculation of Radiation Flux. The total energy flux is found from the transport equations (1.4), writ-
ten in integral form

F=F*4 F~ = Fy(t)exp (—§ xdm) — k&, Fq (1), exp (~ TSﬂ udm\ (2.10)

/
Maw

The value of (3F/8m), and of (9q/9m) in the planar case,is determined from the values of F or q
at the edges of the given cell, i.e., at the points 1/2(mi+mi_1) and 1/2(m1+mi+1)-

Calculation of Detonation Wave, As a result of detonation wave-front smearing, the temperature
varies smoothly over several computational points, However, in the low-temperature region the absorp-
tion coefficient ® depends nonlinearly on the temperature — exponentially and with a large exponent.

The change of the radiation absorption coefficient from the values corresponding to the temperatures
ahead of the shock wave front to the values corresponding to the temperatures behind the front is very large,
several orders of magnitude. Therefore, not only is the absorption coefficient % behind the detonation wave
front so large that in this region the absorption must be accomplished by a mass smaller than the "com-
putational interval™ Am, but also absorption becomes significant even within the shock wave front, in a
zone whose width is determined by the artificial viscosity. As a result of this, the absorption effect be-
gins essentially ahead of the detonation wave front, which leads to unstable propagation of this wave and
irregular velocity of its motion.

To eliminate this phenomenon we adopted a special technique proposed by one of the authors, which
can be termed "artificial broadening of the energy release zone," This technique was suggested by the
real structure of the detonation wave,

The detonation wave is in essence a shock wave (i.e., a jump), whose actual width is determined by
the actual viscosity and thermal conductivity. As a result of the abrupt temperature rise in this discon-
tinuity (or in the narrow zone), there is a sharp increase of the radiation absorption coefficient (absorp-
tion initiation takes place) and intense absorption begins. Although the radiation mean free path may in it-
self be small, it is still considerably longer than the width of the viscous shock, and therefore the energy
release zone is correspondingly wider (although it may be small in comparison with the characteristic di-
mensions of the problem).

When using the artificial viscosity the width of the viscous shock increases, although this width can-
not be permitted to become larger than the energy release zone. Therefore it is necessary to artificially
broaden the energy release zone also, at least enough so that it becomes somewhat larger than the viscous
shock zone,
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To this end we used the technique of limiting the magnitude of

~
= @
/;

TS T /”,,;* the absorption coefficient % on the basis of the condition wAm = 7y,
) E\E i S ™~ where 7, is a constant which regulates the magnitude of the smear-
g \;\E “:Q \L, Ly 105 ! ing (in the calculations presented 7p,, the maximal possible optical
s USIE \ thickness of a single cell, was varied in the range 0.1-0.3), It is ob-
gustetr? 09148107 mem, vious that in this case the total width of the discontinuity becomes
Fig. 1 somewhat greater than in conventional shock waves. However, for a

sufficiently large number of computational points this is not very
significant, since it is still much less than the characteristic "dimension" of the entire problem, i.e., the
total vaporized mass my™, at the time t* of occurrence of the flash, Therefore the energy-release zone
propagation conditions correspond with sufficient precision to the conservation laws in the detonation wave,

The time step At is selected from stability considerations but is such that the vaporization wave's
computational interval Am will pass no faster than 10 time layers because of precision considerations,
Since the vaporization wave is a moving boundary, the number of computational points with respect to mass
is a variable quantity.

As 5001 a8 My,,y My = Am, amass point is added, at which all the quantities are interpolated between
the vaporization wave point and the neighboring computational point. If the number of mass points reaches
the maximal possible number (based on limited computer memory), then the scale is expanded (specifically,
the number of mass points is halved, while retaining the internal and kinetic energy intervals.

3. COMPUTATIONAL EXAMPLE

In the present paper we consider as an example the plane case (v=1). The objective is to demon-
strate qualitatively the gasdynamic effects during the flash and subsequent heating. In place of the tabular
equation of state we use the equation of state (1.5) of an ideal gas with y =k =const=5/3. We neglect con-
densation and absorption of the condensate. In place of the real vapor absorption coefficient, given in tabu-
lar form, we use an approximate analytic interpolational formula for the absorption coefficient, given in
the form

%:—’:—1—}—-%, M1=x1°exp|:b( —‘-—71:—(’)‘, %y = Kp (3.1)

Here %4° is the value of % for T=T;. The function %; corresponds to absorption of weakly ionized
vapors in the low-temperature region, when the change of the ionization degree o, is described by the
Boltzmann exponential relation. In the general case

_ dlnx
b=gmr o T=T

If arresting absorption in electron—ion collisions is dominant, then M~ozez and b=T/T,.

However, if arresting absorption in electron—neutral atom collisions is dominant, then n~ ¢ and
b=1/2T,.

The function %, describes approximately the vapor absorption in the region of those temperatures
where single ionization is completed and multiple ionization proceeds. The values of the constants w°, b,
and K are taken from the tables of n(e, p).

The initial values were selected on the basis of the known solution for adiabatic vapor flow in a cen~
tered expansion wave behind a vaporization wave travelling at constant velocity, with the Jouguet condi-
tion satisfied behind the vaporization wave front. From the given initial parameters my,°, uy°, Py’ Pw®,
corresponding to the selected initial time t; and flux q, =q, (no screening), the initial distributions of the
functions are found for my°=m=0

Pw_ __ ‘i“-’/(‘(‘rl) P _ p oY u 2 P (v=1)/2¢
pwo - <mwo) , pwo - ( pwo) ’ uwo =1 + T—1 [1—‘(?—11:0-)] (3.2)

As an example we considered the effect of radiation with constant flux density g =320 mW/cm? on a
carbon surface with e xposure duration up to 2 psec (this is a typical value of the duration of a single peak
for free generation of radiation by a laser; exposure with shorter duration corresponds to the "giant pulse"
regime).
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Prior to initiation of screening, the vapor motion velocity uy, immediately behind the vaporization
wave was 3.6 km/sec, the pressure p, on the surface ahead of the vaporization wave was 2700 kg/cm?, the
pressure pg in the vapors behind the vaporization wave was 1000 kg/cm?, the corresponding phase change
temperature Ty (pw) was taken equal to 11800°K, and the vapor absorption coefficient %y, at this tempera-
ture was assumed to be 7°10% cm¥g.

This temperature is somewhat higher than that determined by extrapolating the experimental data.
However, since we assumed b=1/T, the cited value of %y, was taken without account for arresting ab-
sorption C during collision of electrons with neutral atoms, photodetachment of electrons from negative
ions C~ and C,”, and molecular absorption Cy and Cj3, which reduces somewhat the value of % for the same
temperature. As a result, the value of %y does not differ markedly from g from tables formulated with
account for these effects.

The reflection coefficient k. is taken as zero. The coefficient K for carbon is about 0.44 - 108 cm ¥ g?
for an incident radiation quantum energy of 1.78 eV, which corresponds to the radiation of a ruby laser.

Under these simplifying assumptions it is easy to obtain estimates of the characteristic parameters,
which can be compared with the calculation itself. These estimates are presented below, after the descrip~
tion of the pattern of the process obtained as a result of the numerical calculation, which shortens their
justification, since this is obvious from the computational results themselves (such estimates were actually
obtained by one of the authors prior to initiating the calculations — during formulation of the problem). In
making a quantitative comparison of the computational results for this example with experimental data,
we must bear in mind that this comparison is to some degree merely illustrative, because of the simpli-
fications made.

Figure 1 shows the distribution of the internal energy e(kJ/g) as a function of the mass m—my(g/cm?)
of vaporized matter at different moments of time t (psec). It is easy to see that in the course of prac-
tically the entire time for which the distributions are shown, absorption is not significant and the distri-
bution itself is close to the primitive distribution found from the self-similar solution of the problem of
adiabatic vapor flow behind a vaporization wave travelling with constant velocity. Only on the last curve,
corresponding to t =0.028 usec, do we note some increase of the internal energy above the values for the
vaporization wave,

Figures 2 and 3 show respectively the distributions of the pressure p (kg/ cm?) and internal energy
at the moment of development of the flash — the formation of a narrow hot layer, which is at the same time
a high pressure layer.

Figures 4 and 5 show the same distributions in the stage of detonation wave formation and its propa-
gation to the boundary with the vacuum. Comparison of Figs. 4 and 5 shows that the width of the energy
release zone is actually somewhat greater than that of the pressure "jump" zone. In Fig. 4 we even see a
zone of pressure decrease behind the shock wave front, which is associated with energy release in this re-
gion ("chem-peak"). The last curves in Figs. 4 and 5 correspond to the time (t=0.1 psec) when the de-
tonation wave reaches the boundary with the vacuum, The energy release zone is now immediately ad-
jacent to this boundary, and the maximal pressure, which previously corresponded to the shock wave front,
now decreases sharply, Detonation wave crossing of the vapor—vacuum boundary is accompanied by marked
acceleration of the "edge” particles. Increase of their velocity leads to more rapid expansion of the "peri-
pheraln layers and reduction of their density, which facilitates penetration of the radiation into the deeper
layers.

Figure 6 relates to the self-consistent heating and rarefaction wave propagation stage, ahead of which
the shock wave front travels toward the surface of the solid body. In Fig. 6a we see that at about 0,22 usec
the shock wave reflects from the surface of the solid body, causing the pressure at the surface to increase
sharply to values close to those which existed prior to onset of screening. By t=0.29 usec the reflected
wave has already passed into the hot and low-density zone, as a result of which the pressure again begins
to decrease, We see clearly in Fig. 6b that the hot region (where the energy of the incident radiation is
released) gradually displaces toward the surface of the solid body. However, since the internal energy of
the vapors in this zone exceeds considerably (by about one order of magnitude) the "effective combustion
enthalpy" prior to initiation of screening, the rate of advance of the heating wave is approximately one or-
der less than the rate of propagation of the vaporization wave prior to the flash, ‘
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Tigure 7a shows the mass my (g/cm? of vaporized matter as a function of time t (usec). After the
dispersed mass (vaporized prior to initiation of the flash) of the layer again becomes transparent, vapor-
ization renews. It is easy to see from Fig. 7a that this occurs approximately at the time 0,5 usec, Now
the hot vapors are essentially forced away from the vaporizing surface by the cold vapors entering "through"
the vaporization wave at the equilibrium phase transition change temperature (we note that in Figs. 1-6
the parameter distributions are plotted as a function of the mass reckoned from the surface of the solid
body). Then in this layer there is a new "flash" in the present case at a time of about 0.95 usec, Its de-

velopment and motion toward the vapor—vacuum boundary is clearly seen in Fig. 7b. Vaporization is re-
newed at a time of about 1.9 usec.

In addition to the pressure oscillations at the surface of the solid body owing to the propagation of
shock, compression, and rarefaction waves, there also appear sharp pressure changes caused by renewal

of vaporization, seen in Fig. 8, where the pressure p, (kg/cmz) at the surface of the solid body is shown
as a function of time.
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Figure 9 shows the logarithm of the ratio of the pressure impulse J (dyne - sec/ cm?) to the magnitude
of the energy supplied E (J/cm? as a function of the logarithm of E. It is easy to see that this ratio de-
creases from the initiation of screening. This relationship is similar to that obtained experimentally [15],
but for constant exposure duration, rather than for constant radiation flux, as in our calculations. It is
curious that the impulse changes quite smoothly in spite of the strong pressure oscillations, In Figs. 7a,
8, and 9 the crosses denote the times of flash occurrence, and the circles are the times when vaporization
renews, The relation which follows from the self-similar solution [9-11] is shown dashed. It is easy to
see that the calculated relation is practically parallel to that obtained from the self-similar solution but
lies somewhat higher. This is associated with the fact that in the numerical calculations we also took into
account the adiabatic dispersion stage after switching off the source. Thus the curve of J/E versus E
corresponds to a whole series of calculations for the same radiation flux but different exposure times,
The dash-dot line shows J/E versus E without a flash.

Calculations have now been made using tables of the thermodynamic and optical properties of the
matter and variable flux q,{t), which occurs in real pulses. These results for various substances and their
analysis will be published separately.

4, ESTIMATES OF PRIMARY PARAMETERS

We shall now examine the estimates of the primary parameters (under the simplifying assumptions
adopted above), which makes it possible to determine how these parameters change in comparison with the
version discussed above with change of the incident radiation flux density and duration of the excitation
process,

Flash Occurrence Criterion, Cooling owing to expansion becomes equal to the energy release owing
to absorption. In the plane centered (with constant value of qy) rarefaction wave following the vaporization
wave, in which the relations (3.2) hold, this condition for points near the vaporization wave (temperature
rise occurs in the hottest layers of the vapors) can be written in the form

1 (dp\ __ Py 9m, 2y _ (%
—p;('a?>w— by O T, D) _<am)w (4.1)

Considering that at the moment tx of vapor temperature rise initiation their layer is optically thin
and consequently qy, ~q,, where q, is the radiation flux incident from outside, the term (6q/8 my,) can be
transformed to

(9q / om)y = %y (1 + k;)

Here we have considered that reflected radiation also causes heating of the vapors. Hence follows
the criterion for initiation of screening

dm _p 2
w Py _
& p, D T Mutudo (1+k)

Here and hereafter we take g, and my* to be their absolute values for convenience.

Since (dmy/dt) =my*/t,, we have

Py X 1
b= o, D) Hgn A 4.2)

Using (1.11), we obtain

1—k (Pylpy) 2¢
14k, H T+1

= %y, My, * 4.3)

Since (pw/py) << H, then nymy* <1, For carbon ymy*= 0.16, for aluminum %ymy*~0.015 (for
k,=0.76 {16]). The vapor's optical thickness T< nymy, (because of the temperature decrease and cor-
responding reduction of % in comparison with %y as the boundary with the vacuum is approached). There-
fore, at the moment of flash occurrence 7+ << 1, i.e., heating begins to take place with a practically com-
pletely transparent vapor layer (the condition (4.3) is local rather than integral). Calculations using (4.3)
are in very good agreement with the results of the numerical calculations. As a result of the exponential
variation of the phase equilibrium pressure with temperature in accordance with the Clapeyron—Clausius
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formula and the exponential variation of the ionization degree and therefore of the absorption coefficient
with temperature, we have =%0(p/p0)w, where w=d In ®/d In p and in the present example v=1,/Qa, I, is
the first ionization potential, and Q4 is the heat of vaporization per atom. For carbon w =2, In accordance
with (1.11) and (1.12), the pressure in the vaporization wave without screening is proportional to the in-
cident radiation flux density q,, specifically

Py = qo (1—F;) / (Hewy)

and the mass of the vapor layer at the moment t, of occurrence of the flash is proportional to tx; there-
fore from the criterion (4.3) follows q,¥+t, =const or t«~q57@+), Thus, with increase of the radiation
flux density g, for the same input energy E =q,7 the screening initiation time t+ (and along with it the char-
acteristic pressure pulsation time and the intervals between successive vaporization renewals) diminishes
far more rapidly than the total exposure time 7, i.e., for large radiation flux densities the vaporization
process can be considered continuous.

Pressure Decrease at Moment of Screening Initiation, After the flash the absorption coefficient in
the heated region increases sharply, the magnitude of the radiation flux incident on the surface of the solid
body decreases markedly, and vaporization terminates practically immediately. This is accompanied by
reduction of the pressure at the surface of the solid body.

The pressure p, at the surface of the solid body decreases by {y +1) times, i.e., about 2.7 times for
v =5/3 (because of vaporization termination), to the pressure Py in the vapors at the surface of the solid
body behind the vaporization wave, and in addition, the pressure decrease continues because of the fact that
prior to occurrence of the flash all the vapors had quite high velocity directed from the surface of the solid
body. The change of the boundary condition at the surface from u=cy, to u=0 leads to the development of
a rarefaction wave, since a pressure gradient is necessary to stop the gas travelling along the surface, We
shall assume that vaporization terminates abruptly (this is not too bad an idealization because of the ex~
tremely abrupt nature of the vapor layer's optical thickness growth and the corresponding reduction of the
radiation flux to the surface of the solid body).

For times which do not differ too much from the moment of the flash, the resulting rarefaction wave
can be considered to be centered; consequently, we have the equations

m — my,™ = Pyty (¢ '_t*)v u—2( —cy) / (vt —1) =cy (4.4)

The constant ¢y in the Riemann invariant is found from the condition that the rarefaction wave prop-
agates throughthe gas, where ¢ =cw, U=cw, at least at those moments of time when the wave boundary has
not yet moved markedly away from the surface of the solid body. At the surface of the solid body, where
the condition u= 0 is now satisfied, we obtain from (4,4)

e _3=r

== (4.5)

Cw
Correspondingly, the pressure p, at the surface changes as follows

P b_( ¢ )277(7—1)’_<3-—-T\2v7(7-l)
B /

¢ 2 (4.6)

W

For vy =5/3 we obtain a pressure decrease by about a factor of 20. We note that this quantity depends
quite strongly on the adiabatic exponent v, andfor (y —1) < 1, which holds with account for vapor condensa-
tion, when the vapor flow is nearly isothermal, the pressure drop is not so large.

Development of Heating-up Process, We shall assume that heating-up after the time tx« takes place
at constant density (the temperature rise rate with account for expansion of the medium at constant pressure,
for example, will differ very slightly from that found, since the heat capacities Cp and C,, are similar). The
equation describing the temperature variation has the form

2 = ugo (1 + Ir) (4.7

For simplicity we set Cy, =const, and we approximate ®(T, p) by the exponential relation (3.1) for

Ty=Ty and K=0, For b/TW « 1 a comparatively small temperature increase leads to a significant increase
of the absorption coefficient. The temperature rise rate increases correspondingly. Consequently, most
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of the warm-up time (after initiation of warm-up) is spent at comparatively low temperatures. Expanding
T/ T into a series in 6 =AT/Ty, and considering only the first term, we obtain

a0 . %, 90 (1 -+ &)

5 = exp (b8) T (4.8)

DT n
The solution of this equation has the form

14 k) '
1 —exp(—b0) = 2T b —t,) (4.9)

We see that, regardless of the degree of heating 9 (tk) taken to be significant, for b8 > 1 we obtain
th — by =Dy | lpubhage (4 + &) (p —1)] (4.10)
Considering (4,2), we obtain
th —t, =+ Dty [ 2y (v — 1)b] (4.11)

Thus, for b> 1 the heating time t—t« is comparable with the time tx of temperature rise initiation
or even considerably shorter. We note that when the vapors do not expand into a vacuum (significant re-
sistance of the air or of the vapors themselves during subsequent flashes), the absence of a pressure dif-
ferential in the vapor region eliminates the critical nature of the heating process; it will exist practically
from the very beginning and the heat-up time can be estimated from (4.10) for tx=0. We see from (4.11)
that absence of a pressure differential leads to considerable shortening of the heating time.

Amplitude of the Shock Wave Propagating from the Heating Zone, Let us estimate the magnitude of
the pressure py in the heating zone, assuming that it is constant within the entire layer being heated and
outside the layer up to and including the shock wave but, naturally, is not equal to the pressure py in the
vapor layer prior to initiation of heating. Then we obtain from the energy equation (1.3)

o aq
St = (4.12)
Setting y =const and pf=const, we obtain
ok Pt v o (r—1 3¢
B (r—1) o o P om (¢.13)

Using (4.13), the continuity equation (1.2) can be rewritten in the form

piY du dg
=1 7+ am = (4.14)
Integrating (4.14), we obtain
lpy/(y =D v = —g - const (4.15)

Two shock waves with the same amplitudes propagate in both directions from the heating region.
Hence the shock wave velocity ug can be found from the relation

2ypiAu; = (v — {2, uy == Auy + u, (4.16)

We note that the shock wave travelling toward the surface of the solid body is weakened as it inter-
acts with the rarefaction wave described above. Let us assume that the shock wave will be a wave of mod-
erate intensity (travelling opposite the radiation), i.e., we use the following expansion of the shock adiabat
[12]:

Pt — Py = Ap: m Auh m = PuCuw “- + 1/4 ('\’ + 1)"]] (4.17)

Here 7 denotes Aug/cy,.

Equation (4.17) is easily transformed to

pilpw =1+ v+ Y (v + Iny (4.18)

Using the relations across the vaporization wave, we obtain from (4.186) '

2 (1 —k)q(ps/ pw) =H [y (4.19)
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¢ From (4,18) and (4.19) we obtain the following equation for finding 7:
Hhy =20 —km {1 + v+ Yy + Dnin} (4.20)
k Solving this equation for H/hy, =3, v =%, kp=0, we find that

1’]:060, AT/Tw:(Tf ——Tw)/Tw: 042, Ap/p“:(pf —pw) /pw

g N —0.84, Ac/c, = (¢ — u) /€y = 0.20.

7 L1
g 10 122

We note that these parameters justify use of the moderate amplitude wave
approximation, If is not essential in practice whether or not the increase of
Fig, 10 the pressure and heating occurs in a shock wave or in a compression wave, A
temperature increase by a factor of 1.4 is sufficient for very marked increase
of the absorption coefficient — by 20 times for b=1I/Tw =10, We note that this estimate of the shock wave
amplitude shows that the structure of the heating zone is quite unimportant, which naturally avoids the need
for using any special methods for the numerical calculation of this narrow zone.

Parameters of Detonation Wave from Heating Zone. The relations across the strong detonation wave
front, which is maintained by an incident radiation front, were presented in [7, 8]. However, in the present
case the backpressure is significant and the relations have the form:

continuity equation
mg (vg —vy) = —Au = —(ug — ) (4.21)

equation of motion
mgAu = pg — Py

(4.22)
energy equation
my leg — ey 4 Uy (U — w?)) + patta — prity = —4qo (4.23)
Jouguet condition
My = Pecq (4.24)
equation of state
€ = pava! (ya—1), &1 =pyo; [ (yy —1) (4.25)

Here the subscript d relates to the state behind the detonation wave front, and the subscript 1 applies
to the states ahead of the front, and mq > 0 for g¢°(t) <0, since the wave travels opposite the radiation flux,
Considering that the speed of sound equals cq=vkgpgvg, we obtain from (4.21)-(4.25):

detonation velocity
my" =gt + 7k (4 —py/ py)l (4.26)
internal energy behind detonation wave front

_ (pglp) =1/ (rg— 1]
R B (R RV (4.27)

specific volume behind detonation wave front
w=v /{1 + (1 + py/ pa) | kal} (4.28)

Since in this case the detonation wave travels through gas with parameters close to those behind the
vaporization wave prior to initiation of screening (p;~pw, 01~ Py, hy ®hy), neglecting the differences be-
tween v 3 and v; and between kq and v 4 and taking into account the relations across the vaporization wave,
for large values of the pressure ratio y=pg/ py across the detonation wave we can obtain the following ex-
pression for finding y:

Ei VA7 - (-4 S 2] ) -ty oo

For the typical value H/hy, =3 and k. =0 we find that y~5.2; then according to (4.28) the density ratio
Pd/Pw =1.48 and, consequently, the ratio pd/pd increases by 3.6 times in comparison with pw/pw. In ac-
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cordance with (4.26), the detonation wave propagation velocity equals 2.8 | mwl , i.e., the detonation wave
travels opposite the radiation flux with considerably greater velocity than the vaporization wave travels

in the positive direction of the vaporization wave under the action of the same radiation flux q,. It iscurious
that the detonation wave's relative amplitude is practically independent of the incident radiation flux density.

Self-Consistent Rarefaction and Heating Wave, If the temperature of the substances in the region
where the radiation energy is released is considerably higher than that of the vapors ahead of the heating
wave, and the characteristic vapor density in the wave exceeds considerably the vapor density ahead of the
wave, then the solution can be obtained by using the solution of the self~-similar problem [9-11] for the
absorption coefficient dependence, given in the form ®=Kp (we note that self-similar solution is valid,
strictly speaking, only for infinite vapor density ahead of the wave and for absolutely cold gas ahead of the
wave), The dependences of the maximal pressure p,,, maximal internal energy ey,, and heated mass m
on the time t and radiation flux density q, will have the form

P = P (Kt)5 qo ™, m = B (KUl qo'h,  m =, (Kt)™ qq't (4.30)

The values of Py, Em, #m are given by the following table, obtained by V. M. Krol'by a technique
similar to that he used in [11] for other power-law relations (e, p)

T= s s 85
P = 0.747  0.627 0.468
E,= 0.517 0.712 1.015
pm—=  1.260 1.470 1.050

Effect of Two-Dimensionality on Screening Development Time, We have examined only the planar
case, However, in view of the limited size of the irradiated spot, lateral spreading of the vapor jet may
begin if the exposure process continues long enough, In order to evaluate the effect of lateral spreading
on the time for initiation of the flash, we calculated a similar problem, but for radially symmetry vapor
flow from a vaporizing sphere,

Figure 10 shows the ratio t' of the time t3* for initiation of the flash in the spherical case to the time
ty* for initiation of the flash in the planar case as a function of r'=r,/cyts*, where r; is the radius of curva-
ture of the irradiated surface, We see that lateral spreading "suppresses” the onset of screening., This is
associated with the fact that for t> (ry/cy,) a quasistationary regime is established, in which the pressure
gradients near the vaporizing surface no longer change; while in the planar case these gradients decrease
continuously as the layer thickness increases. However, in the case in which screening begins in the planar
spreading stage, lateral spreading leads to establishment of the quasistationary vapor motion and heating
regime [6].

In this case, according to [6], the following parameter variation relations will hold (for the case
n=Kp):
€~ g% (Kro)'®, p ~ ¢ (Kro)™, u~ q*® (Kro)F', p ~ (Kro)”

We wish to thank P. V. Kevlishvili for assistance in carrying out the present study.
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